Binomial coefficients and quadratic fields

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Binomial Coefficients and Quadratic Fields

Let E be a real quadratic field with discriminant d 6≡ 0 (mod p) where p is an odd prime. For ρ = ±1 we determine ∏ 0<c<d, ( d c )=ρ ( p−1 bpc/dc ) modulo p2 in terms of a Lucas sequence, the fundamental unit and the class number of E.

متن کامل

Binomial Coefficients and Quadratic Fields 3

Let E be a real quadratic field with discriminant d ≡ 0 (mod p) where p is an odd prime. In terms of a Lucas quotient, the fundamental unit and the class number of E, we determine 0<c<d, (d c)=ρ p−1 ⌊pc/d⌋ modulo p 2 where ρ = ±1.

متن کامل

Integral Representations and Binomial Coefficients

In this article, we present two extensions of Sofo’s theorems on integral representations of ratios of reciprocals of double binomial coefficients. From the two extensions, we get several new relations between integral representations and binomial coefficients.

متن کامل

Geometry of Binomial Coefficients

This note describes the geometrical pattern of zeroes and ones obtained by reducing modulo two each element of Pascal's triangle formed from binomial coefficients. When an infinite number of rows of Pascal's triangle are included, the limiting pattern is found to be "self-similar," and is characterized by a "fractal dimension" log2 3. Analysis of the pattern provides a simple derivation of the ...

متن کامل

Planar Binomial Coefficients

The notion of binomial coefficients (T S ) of finite planar, reduced rooted trees T, S is defined and a recursive formula for its computation is shown. The nonassociative binomial formula (1 + x) = ∑

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 2006

ISSN: 0002-9939,1088-6826

DOI: 10.1090/s0002-9939-06-08262-1